k8s gc controller源码分析
1. K8s 的垃圾回收策略
k8s目前支持三种回收策略:
(1)前台级联删除(Foreground Cascading Deletion):在这种删除策略中,所有者对象的删除将会持续到其所有从属对象都被删除为止。当所有者被删除时,会进入“正在删除”(deletion in progress)状态,此时:
- 对象仍然可以通过 REST API 查询到(可通过 kubectl 或 kuboard 查询到)
- 对象的 deletionTimestamp 字段被设置
- 对象的 metadata.finalizers 包含值 foregroundDeletion
(2)后台级联删除(Background Cascading Deletion):这种删除策略会简单很多,它会立即删除所有者的对象,并由垃圾回收器在后台删除其从属对象。这种方式比前台级联删除快的多,因为不用等待时间来删除从属对象。
(3)孤儿(Orphan):这种情况下,对所有者的进行删除只会将其从集群中删除,并使所有对象处于“孤儿”状态。
举例:已有一个deployA, 对应的rs假设为 rsA, pod为PodA。
(1)前台删除:先删除podA, 再删除rsA, 再删除deployA。 podA的删除如果卡在,rsA也会被卡住。
(2)后台删除:先删除deployA, 再删除rsA, 再删除podA。 podA和rsA是否会删除成功,deploy不会受影响。
(3)孤儿删除:只删除deployA。rsA, podA不受影响。 rsA的owner不再是deployA。
2 gc 源码分析
和deployController, rsController一样,GarbageCollectorController也是kube-controller-manager(kcm)中的一个控制器。
GarbageCollectorController 的启动方法为 startGarbageCollectorController
,主要逻辑如下:
从第三步开始每一步都深入展开。第三步对应2.1。
(1)初始化客户端,用于发现集群中的资源。这个先不关注
(2)获得deletableResources,以及ignoredResources。
deletableResources: 所有支持”delete”, “list”, “watch” 操作的资源
ignoredResources:kcm启动时GarbageCollectorController的config指定
(3)初始化 garbageCollector 对象。
(4)启动garbageCollector
(5)garbageCollector同步
(6)开启debug模式
func startGarbageCollectorController(ctx ControllerContext) (http.Handler, bool, error) {
// 1.初始化客户端
if !ctx.ComponentConfig.GarbageCollectorController.EnableGarbageCollector {
return nil, false, nil
}
gcClientset := ctx.ClientBuilder.ClientOrDie("generic-garbage-collector")
discoveryClient := cacheddiscovery.NewMemCacheClient(gcClientset.Discovery())
config := ctx.ClientBuilder.ConfigOrDie("generic-garbage-collector")
metadataClient, err := metadata.NewForConfig(config)
if err != nil {
return nil, true, err
}
// 2. 获得deletableResources,以及ignoredResources
// Get an initial set of deletable resources to prime the garbage collector.
deletableResources := garbagecollector.GetDeletableResources(discoveryClient)
ignoredResources := make(map[schema.GroupResource]struct{})
for _, r := range ctx.ComponentConfig.GarbageCollectorController.GCIgnoredResources {
ignoredResources[schema.GroupResource{Group: r.Group, Resource: r.Resource}] = struct{}{}
}
// 3. NewGarbageCollector
garbageCollector, err := garbagecollector.NewGarbageCollector(
metadataClient,
ctx.RESTMapper,
deletableResources,
ignoredResources,
ctx.ObjectOrMetadataInformerFactory,
ctx.InformersStarted,
)
if err != nil {
return nil, true, fmt.Errorf("failed to start the generic garbage collector: %v", err)
}
// 4. 启动garbageCollector
// Start the garbage collector.
workers := int(ctx.ComponentConfig.GarbageCollectorController.ConcurrentGCSyncs)
go garbageCollector.Run(workers, ctx.Stop)
// Periodically refresh the RESTMapper with new discovery information and sync
// the garbage collector.
// 5. garbageCollector同步
go garbageCollector.Sync(gcClientset.Discovery(), 30*time.Second, ctx.Stop)
// 6. 开启debug模式
return garbagecollector.NewDebugHandler(garbageCollector), true, nil
}
2.1 初始化 garbageCollector 对象
2.1.1 garbageCollector包含的结构体对象
garbageCollector需要额外的结构:
attemptToDelete,attemptToOrphan:限速队列
uidToNode:一个缓存依赖关系的图。一个map结构,key=uid, value是一个node结构。
type GarbageCollector struct {
restMapper resettableRESTMapper
metadataClient metadata.Interface
attemptToDelete workqueue.RateLimitingInterface
attemptToOrphan workqueue.RateLimitingInterface
dependencyGraphBuilder *GraphBuilder
absentOwnerCache *UIDCache
workerLock sync.RWMutex
}
// GraphBuilder: based on the events supplied by the informers, GraphBuilder updates
// uidToNode, a graph that caches the dependencies as we know, and enqueues
// items to the attemptToDelete and attemptToOrphan.
type GraphBuilder struct {
restMapper meta.RESTMapper
// 每一个monitor对应一种资源
monitors monitors
monitorLock sync.RWMutex
informersStarted <-chan struct{}
stopCh <-chan struct{}
running bool
metadataClient metadata.Interface
graphChanges workqueue.RateLimitingInterface
uidToNode *concurrentUIDToNode
attemptToDelete workqueue.RateLimitingInterface
attemptToOrphan workqueue.RateLimitingInterface
absentOwnerCache *UIDCache
sharedInformers controller.InformerFactory
ignoredResources map[schema.GroupResource]struct{}
}
type concurrentUIDToNode struct {
uidToNodeLock sync.RWMutex
uidToNode map[types.UID]*node
}
type node struct {
identity objectReference
dependentsLock sync.RWMutex
dependents map[*node]struct{} //该节点的所有依赖
deletingDependents bool
deletingDependentsLock sync.RWMutex
beingDeleted bool
beingDeletedLock sync.RWMutex
virtual bool
virtualLock sync.RWMutex
owners []metav1.OwnerReference //该节点的所有owner
}
举例来说:
假设集群中有:deployA, rsA, podA三个对象。
monitors 负责监听这三种资源的变化。然后根据情况扔进 attemptToDelete,attemptToOrphan队列。
GraphBuilder负责构建一个图。在这种情况下,图的内容为:
Node1( key=deployA.uid ): 它的owner为空,dependents=rsA。
Node2( key=rsA.uid ): 它的owner=deployA,dependents=podA。
Node3( key=pod.uid ): 它的owner=rsA,dependents为空。
同时,每个节点还有beingDeleted,deletingDependents等关键字段。这样gc根据这个图就可以很方便地进行各种策略的删除。
2.1.2 NewGarbageCollector
NewGarbageCollector就做了俩件事
(1)初始化GarbageCollector结构体
(2)调用controllerFor定义对象变化的处理事件。无论是监听到add, update, del都是将其打包成一个event事件,然后加入graphChanges队列。
func NewGarbageCollector(
metadataClient metadata.Interface,
mapper resettableRESTMapper,
deletableResources map[schema.GroupVersionResource]struct{},
ignoredResources map[schema.GroupResource]struct{},
sharedInformers controller.InformerFactory,
informersStarted <-chan struct{},
) (*GarbageCollector, error) {
attemptToDelete := workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "garbage_collector_attempt_to_delete")
attemptToOrphan := workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "garbage_collector_attempt_to_orphan")
absentOwnerCache := NewUIDCache(500)
gc := &GarbageCollector{
metadataClient: metadataClient,
restMapper: mapper,
attemptToDelete: attemptToDelete,
attemptToOrphan: attemptToOrphan,
absentOwnerCache: absentOwnerCache,
}
gb := &GraphBuilder{
metadataClient: metadataClient,
informersStarted: informersStarted,
restMapper: mapper,
graphChanges: workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "garbage_collector_graph_changes"),
uidToNode: &concurrentUIDToNode{
uidToNode: make(map[types.UID]*node),
},
attemptToDelete: attemptToDelete,
attemptToOrphan: attemptToOrphan,
absentOwnerCache: absentOwnerCache,
sharedInformers: sharedInformers,
ignoredResources: ignoredResources,
}
//
if err := gb.syncMonitors(deletableResources); err != nil {
utilruntime.HandleError(fmt.Errorf("failed to sync all monitors: %v", err))
}
gc.dependencyGraphBuilder = gb
return gc, nil
}
syncMonitors就是同步更新哪些资源需要监听,然后调用controllerFor注册事件处理。
func (gb *GraphBuilder) syncMonitors(resources map[schema.GroupVersionResource]struct{}) error {
gb.monitorLock.Lock()
defer gb.monitorLock.Unlock()
toRemove := gb.monitors
if toRemove == nil {
toRemove = monitors{}
}
current := monitors{}
errs := []error{}
kept := 0
added := 0
for resource := range resources {
if _, ok := gb.ignoredResources[resource.GroupResource()]; ok {
continue
}
if m, ok := toRemove[resource]; ok {
current[resource] = m
delete(toRemove, resource)
kept++
continue
}
kind, err := gb.restMapper.KindFor(resource)
if err != nil {
errs = append(errs, fmt.Errorf("couldn't look up resource %q: %v", resource, err))
continue
}
c, s, err := gb.controllerFor(resource, kind)
if err != nil {
errs = append(errs, fmt.Errorf("couldn't start monitor for resource %q: %v", resource, err))
continue
}
current[resource] = &monitor{store: s, controller: c}
added++
}
gb.monitors = current
for _, monitor := range toRemove {
if monitor.stopCh != nil {
close(monitor.stopCh)
}
}
klog.V(4).Infof("synced monitors; added %d, kept %d, removed %d", added, kept, len(toRemove))
// NewAggregate returns nil if errs is 0-length
return utilerrors.NewAggregate(errs)
}
controllerFor无论是监听到add, update, del都是将其打包成一个event事件,然后加入graphChanges队列。
func (gb *GraphBuilder) controllerFor(resource schema.GroupVersionResource, kind schema.GroupVersionKind) (cache.Controller, cache.Store, error) {
handlers := cache.ResourceEventHandlerFuncs{
// add the event to the dependencyGraphBuilder's graphChanges.
AddFunc: func(obj interface{}) {
event := &event{
eventType: addEvent,
obj: obj,
gvk: kind,
}
gb.graphChanges.Add(event)
},
UpdateFunc: func(oldObj, newObj interface{}) {
// TODO: check if there are differences in the ownerRefs,
// finalizers, and DeletionTimestamp; if not, ignore the update.
event := &event{
eventType: updateEvent,
obj: newObj,
oldObj: oldObj,
gvk: kind,
}
gb.graphChanges.Add(event)
},
DeleteFunc: func(obj interface{}) {
// delta fifo may wrap the object in a cache.DeletedFinalStateUnknown, unwrap it
if deletedFinalStateUnknown, ok := obj.(cache.DeletedFinalStateUnknown); ok {
obj = deletedFinalStateUnknown.Obj
}
event := &event{
eventType: deleteEvent,
obj: obj,
gvk: kind,
}
gb.graphChanges.Add(event)
},
}
shared, err := gb.sharedInformers.ForResource(resource)
if err != nil {
klog.V(4).Infof("unable to use a shared informer for resource %q, kind %q: %v", resource.String(), kind.String(), err)
return nil, nil, err
}
klog.V(4).Infof("using a shared informer for resource %q, kind %q", resource.String(), kind.String())
// need to clone because it's from a shared cache
shared.Informer().AddEventHandlerWithResyncPeriod(handlers, ResourceResyncTime)
return shared.Informer().GetController(), shared.Informer().GetStore(), nil
}
2.2 启动garbageCollector
func (gc *GarbageCollector) Run(workers int, stopCh <-chan struct{}) {
defer utilruntime.HandleCrash()
defer gc.attemptToDelete.ShutDown()
defer gc.attemptToOrphan.ShutDown()
defer gc.dependencyGraphBuilder.graphChanges.ShutDown()
klog.Infof("Starting garbage collector controller")
defer klog.Infof("Shutting down garbage collector controller")
// 1.启动dependencyGraphBuilder
go gc.dependencyGraphBuilder.Run(stopCh)
if !cache.WaitForNamedCacheSync("garbage collector", stopCh, gc.dependencyGraphBuilder.IsSynced) {
return
}
klog.Infof("Garbage collector: all resource monitors have synced. Proceeding to collect garbage")
// 启动runAttemptToDeleteWorker,runAttemptToOrphanWorker
// gc workers
for i := 0; i < workers; i++ {
go wait.Until(gc.runAttemptToDeleteWorker, 1*time.Second, stopCh)
go wait.Until(gc.runAttemptToOrphanWorker, 1*time.Second, stopCh)
}
<-stopCh
}
2.2.1 启动dependencyGraphBuilder
// Run sets the stop channel and starts monitor execution until stopCh is
// closed. Any running monitors will be stopped before Run returns.
func (gb *GraphBuilder) Run(stopCh <-chan struct{}) {
klog.Infof("GraphBuilder running")
defer klog.Infof("GraphBuilder stopping")
// Set up the stop channel.
gb.monitorLock.Lock()
gb.stopCh = stopCh
gb.running = true
gb.monitorLock.Unlock()
// Start monitors and begin change processing until the stop channel is
// closed.
// 1. 启动各个资源的监听
gb.startMonitors()
// 2. runProcessGraphChanges开始处理各种事件
wait.Until(gb.runProcessGraphChanges, 1*time.Second, stopCh)
// 这里就是有monitor关闭后的处理
// Stop any running monitors.
gb.monitorLock.Lock()
defer gb.monitorLock.Unlock()
monitors := gb.monitors
stopped := 0
for _, monitor := range monitors {
if monitor.stopCh != nil {
stopped++
close(monitor.stopCh)
}
}
// reset monitors so that the graph builder can be safely re-run/synced.
gb.monitors = nil
klog.Infof("stopped %d of %d monitors", stopped, len(monitors))
}
// 启动各个资源的监听
func (gb *GraphBuilder) startMonitors() {
gb.monitorLock.Lock()
defer gb.monitorLock.Unlock()
if !gb.running {
return
}
// we're waiting until after the informer start that happens once all the controllers are initialized. This ensures
// that they don't get unexpected events on their work queues.
<-gb.informersStarted
monitors := gb.monitors
started := 0
for _, monitor := range monitors {
if monitor.stopCh == nil {
monitor.stopCh = make(chan struct{})
gb.sharedInformers.Start(gb.stopCh)
go monitor.Run()
started++
}
}
klog.V(4).Infof("started %d new monitors, %d currently running", started, len(monitors))
}
2.2.2 runAttemptToDeleteWorker
runAttemptToDeleteWorker就是从attemptToDelete队列中取出来一个对象处理。
func (gc *GarbageCollector) runAttemptToDeleteWorker() {
for gc.attemptToDeleteWorker() {
}
}
func (gc *GarbageCollector) attemptToDeleteWorker() bool {
item, quit := gc.attemptToDelete.Get()
...
err := gc.attemptToDeleteItem(n)
...
return true
}
2.2.3 runAttemptToOrphanWorker
runAttemptToOrphanWorker就是从attemptToOrphan队列中取出来一个对象处理。
func (gc *GarbageCollector) runAttemptToOrphanWorker() {
for gc.attemptToOrphanWorker() {
}
}
func (gc *GarbageCollector) attemptToOrphanWorker() bool {
item, quit := gc.attemptToOrphan.Get()
defer gc.attemptToOrphan.Done(item)
owner, ok := item.(*node)
if !ok {
utilruntime.HandleError(fmt.Errorf("expect *node, got %#v", item))
return true
}
// we don't need to lock each element, because they never get updated
owner.dependentsLock.RLock()
dependents := make([]*node, 0, len(owner.dependents))
for dependent := range owner.dependents {
dependents = append(dependents, dependent)
}
owner.dependentsLock.RUnlock()
err := gc.orphanDependents(owner.identity, dependents)
if err != nil {
utilruntime.HandleError(fmt.Errorf("orphanDependents for %s failed with %v", owner.identity, err))
gc.attemptToOrphan.AddRateLimited(item)
return true
}
// update the owner, remove "orphaningFinalizer" from its finalizers list
err = gc.removeFinalizer(owner, metav1.FinalizerOrphanDependents)
if err != nil {
utilruntime.HandleError(fmt.Errorf("removeOrphanFinalizer for %s failed with %v", owner.identity, err))
gc.attemptToOrphan.AddRateLimited(item)
}
return true
}
2.2.4 总结
(1)NewGarbageCollector初始化了graphbuild, attempToDelete, attempToOrphan队列,然后定义了资源变化时的处理对象
(2)GarbageCollector.run 做了三个工作。第一是
, 让监控的所有资源,都用一个处理逻辑。就是:add, update, del都是将其打包成一个event事件,然后加入graphChanges队列。第二是
,启动runProcessGraphChanges处理graphChanges队列的对象。第三是
, 启动AttemptToOrphanWorker,AttemptToDeleteWorker进行gc处理。
(3)到这里,总的来说逻辑就是:
- NewGarbageCollector监听了所有支持 list, watch, delete操作的事件
- 然后定义这些对象所有的add, update, del变化都扔进 graphChanges队列
- 然后启动runProcessGraphChanges,处理graphChanges的对象。runProcessGraphChanges主要做俩件事,一是维护图,二是将可能需要删除的对象,扔进 AttemptToOrphan,或者AttemptToDelete进行处理
- AttemptToOrphanWorker,AttemptToDeleteWorker进行具体的gc处理。
到这里为止,gc的初始化,以及大概的流程都清楚了。接下来具体分析runProcessGraphChanges函数,以及AttemptToOrphanWorker,AttemptToDeleteWorker的处理逻辑。
2.3 runProcessGraphChanges
runProcessGraphChanges作用就是俩件事:
(1)时刻uidToNode维护图的正确和完整
(2)将可能需要删除的对象扔进AttemptToOrphan,AttemptToDelete队列
具体逻辑如下:
(1)从 graphChanges 取出一个 对象(event),然后判断图里面有没有这个对象。如果存在,将该节点标记为 observed。这个是表示,这个节点不是virtual节点。
(2)分三种情况进行处理。具体是:
func (gb *GraphBuilder) runProcessGraphChanges() {
for gb.processGraphChanges() {
}
}
// Dequeueing an event from graphChanges, updating graph, populating dirty_queue.
func (gb *GraphBuilder) processGraphChanges() bool {
item, quit := gb.graphChanges.Get()
if quit {
return false
}
defer gb.graphChanges.Done(item)
event, ok := item.(*event)
if !ok {
utilruntime.HandleError(fmt.Errorf("expect a *event, got %v", item))
return true
}
obj := event.obj
accessor, err := meta.Accessor(obj)
if err != nil {
utilruntime.HandleError(fmt.Errorf("cannot access obj: %v", err))
return true
}
klog.V(5).Infof("GraphBuilder process object: %s/%s, namespace %s, name %s, uid %s, event type %v", event.gvk.GroupVersion().String(), event.gvk.Kind, accessor.GetNamespace(), accessor.GetName(), string(accessor.GetUID()), event.eventType)
// Check if the node already exists
// 1.判断图里面有没有这个对象
existingNode, found := gb.uidToNode.Read(accessor.GetUID())
// 1.1 如果存在,将其标记为 observed。这个是表示,这个节点不是virtual节点。
if found {
// this marks the node as having been observed via an informer event
// 1. this depends on graphChanges only containing add/update events from the actual informer
// 2. this allows things tracking virtual nodes' existence to stop polling and rely on informer events
existingNode.markObserved()
}
// 2. 分三种情况进行处理。
switch {
case (event.eventType == addEvent || event.eventType == updateEvent) && !found:
newNode := &node{
identity: objectReference{
OwnerReference: metav1.OwnerReference{
APIVersion: event.gvk.GroupVersion().String(),
Kind: event.gvk.Kind,
UID: accessor.GetUID(),
Name: accessor.GetName(),
},
Namespace: accessor.GetNamespace(),
},
dependents: make(map[*node]struct{}),
owners: accessor.GetOwnerReferences(),
deletingDependents: beingDeleted(accessor) && hasDeleteDependentsFinalizer(accessor),
beingDeleted: beingDeleted(accessor),
}
gb.insertNode(newNode)
// the underlying delta_fifo may combine a creation and a deletion into
// one event, so we need to further process the event.
gb.processTransitions(event.oldObj, accessor, newNode)
case (event.eventType == addEvent || event.eventType == updateEvent) && found:
// handle changes in ownerReferences
added, removed, changed := referencesDiffs(existingNode.owners, accessor.GetOwnerReferences())
if len(added) != 0 || len(removed) != 0 || len(changed) != 0 {
// check if the changed dependency graph unblock owners that are
// waiting for the deletion of their dependents.
gb.addUnblockedOwnersToDeleteQueue(removed, changed)
// update the node itself
existingNode.owners = accessor.GetOwnerReferences()
// Add the node to its new owners' dependent lists.
gb.addDependentToOwners(existingNode, added)
// remove the node from the dependent list of node that are no longer in
// the node's owners list.
gb.removeDependentFromOwners(existingNode, removed)
}
if beingDeleted(accessor) {
existingNode.markBeingDeleted()
}
gb.processTransitions(event.oldObj, accessor, existingNode)
case event.eventType == deleteEvent:
if !found {
klog.V(5).Infof("%v doesn't exist in the graph, this shouldn't happen", accessor.GetUID())
return true
}
// removeNode updates the graph
gb.removeNode(existingNode)
existingNode.dependentsLock.RLock()
defer existingNode.dependentsLock.RUnlock()
if len(existingNode.dependents) > 0 {
gb.absentOwnerCache.Add(accessor.GetUID())
}
for dep := range existingNode.dependents {
gb.attemptToDelete.Add(dep)
}
for _, owner := range existingNode.owners {
ownerNode, found := gb.uidToNode.Read(owner.UID)
if !found || !ownerNode.isDeletingDependents() {
continue
}
// this is to let attempToDeleteItem check if all the owner's
// dependents are deleted, if so, the owner will be deleted.
gb.attemptToDelete.Add(ownerNode)
}
}
return true
}
第一种: 如果图中不存在这个节点,并且事件为 add或者update,处理方法为:
(1) 初始化一个node节点。然后插入到map中。
case (event.eventType == addEvent || event.eventType == updateEvent) && !found:
newNode := &node{
// 该对象的标记,由APIVersion,Kind,UID,Name
identity: objectReference{
OwnerReference: metav1.OwnerReference{
APIVersion: event.gvk.GroupVersion().String(),
Kind: event.gvk.Kind,
UID: accessor.GetUID(),
Name: accessor.GetName(),
},
Namespace: accessor.GetNamespace(),
},
dependents: make(map[*node]struct{}), // 这里现在是空的
owners: accessor.GetOwnerReferences(),
// 判断是否是删dependent
deletingDependents: beingDeleted(accessor) && hasDeleteDependentsFinalizer(accessor),
// 判断是否在正在删除
beingDeleted: beingDeleted(accessor),
}
gb.insertNode(newNode)
// the underlying delta_fifo may combine a creation and a deletion into
// one event, so we need to further process the event.
gb.processTransitions(event.oldObj, accessor, newNode)
(2)insertNode,将这个节点加入map中,并且将这个node加入所有的owner node的dependent中。
假设当前是当前节点是rsA, 这一步会将rsA加入map中,并且增加deployA的一个dependent为rsA.
(3)调用processTransitions进行进一步的处理。processTransitions是一个通用函数,它的作用就是将这个对象放入放到AttemptToOrphan或者AttemptToDelete队列,这个等下具体介绍
第二种, 如果图中存在这个节点,并且事件为 add或者update,处理方法为:
(1)处理references Diff
- 首先根据节点的信息 和 对象最新的信息,判断OwnerReference的变化。这里分为三种变化:
added 表示该对象的OwnerReference中新增了哪些 owner; removed表示该对象删除了哪些owner;changed表示哪些改变了
- 针对这三种变化做出的处理如下:
a. 调用addUnblockedOwnersToDeleteQueue将可能阻塞的owner重新加入队列。具体可以看代码注释中的分析
b. existingNode.owners = accessor.GetOwnerReferences(), 让节点使用最新的owner
c. 新增了owner,需要在新增owner中的Dependents增加一个Dependent, 就是该节点
d. 删除了owner,需要在原来的owner中的Dependents删除这个Dependent, 就是该节点
(2) 如果当前对象有deletionStamp,标记这个节点正在删除
(3)调用processTransitions进行进一步的处理。processTransitions是一个通用函数,它的作用就是将这个对象放入放到AttemptToOrphan或者AttemptToDelete队列,这个等下具体介绍
case (event.eventType == addEvent || event.eventType == updateEvent) && found:
// handle changes in ownerReferences
added, removed, changed := referencesDiffs(existingNode.owners, accessor.GetOwnerReferences())
if len(added) != 0 || len(removed) != 0 || len(changed) != 0 {
// check if the changed dependency graph unblock owners that are
// waiting for the deletion of their dependents.
// a.调用addUnblockedOwnersToDeleteQueue将可能阻塞的owner重新加入队列。具体可以看代码注释中的分析
gb.addUnblockedOwnersToDeleteQueue(removed, changed)
// update the node itself
// b.让节点使用最新的owner
existingNode.owners = accessor.GetOwnerReferences()
// Add the node to its new owners' dependent lists.
// c. 新增了owner,需要在新增owner中的Dependents增加一个Dependent, 就是该节点
gb.addDependentToOwners(existingNode, added)
// remove the node from the dependent list of node that are no longer in
// the node's owners list.
// d. 删除了owner,需要在原来的owner中的Dependents删除这个Dependent, 就是该节点
gb.removeDependentFromOwners(existingNode, removed)
}
if beingDeleted(accessor) {
existingNode.markBeingDeleted()
}
gb.processTransitions(event.oldObj, accessor, existingNode)
// TODO: profile this function to see if a naive N^2 algorithm performs better
// when the number of references is small.
func referencesDiffs(old []metav1.OwnerReference, new []metav1.OwnerReference) (added []metav1.OwnerReference, removed []metav1.OwnerReference, changed []ownerRefPair) {
oldUIDToRef := make(map[string]metav1.OwnerReference)
for _, value := range old {
oldUIDToRef[string(value.UID)] = value
}
oldUIDSet := sets.StringKeySet(oldUIDToRef)
for _, value := range new {
newUID := string(value.UID)
if oldUIDSet.Has(newUID) {
if !reflect.DeepEqual(oldUIDToRef[newUID], value) {
changed = append(changed, ownerRefPair{oldRef: oldUIDToRef[newUID], newRef: value})
}
oldUIDSet.Delete(newUID)
} else {
added = append(added, value)
}
}
for oldUID := range oldUIDSet {
removed = append(removed, oldUIDToRef[oldUID])
}
return added, removed, changed
}
// 以foreground方式删除deployA的时候,deployA会被Block,原因在于它在等 rsA的删除。
// 这个时候如果改变rsA的OwnerReference,比如删除owner, deployA。这个时候需要通知deployA,你不用等了,可以直接删除了。
// addUnblockedOwnersToDeleteQueue就是做这样的事情,检测到rsA的OwnerReference变化,将等待的deployA加入删除队列。
// if an blocking ownerReference points to an object gets removed, or gets set to
// "BlockOwnerDeletion=false", add the object to the attemptToDelete queue.
func (gb *GraphBuilder) addUnblockedOwnersToDeleteQueue(removed []metav1.OwnerReference, changed []ownerRefPair) {
for _, ref := range removed {
if ref.BlockOwnerDeletion != nil && *ref.BlockOwnerDeletion {
node, found := gb.uidToNode.Read(ref.UID)
if !found {
klog.V(5).Infof("cannot find %s in uidToNode", ref.UID)
continue
}
gb.attemptToDelete.Add(node)
}
}
for _, c := range changed {
wasBlocked := c.oldRef.BlockOwnerDeletion != nil && *c.oldRef.BlockOwnerDeletion
isUnblocked := c.newRef.BlockOwnerDeletion == nil || (c.newRef.BlockOwnerDeletion != nil && !*c.newRef.BlockOwnerDeletion)
if wasBlocked && isUnblocked {
node, found := gb.uidToNode.Read(c.newRef.UID)
if !found {
klog.V(5).Infof("cannot find %s in uidToNode", c.newRef.UID)
continue
}
gb.attemptToDelete.Add(node)
}
}
}
第三种,这个对象已经删除, 处理方法为:
(1)从图中删除这个节点,如果这个节点有dependents,将这个节点加入absentOwnerCache。这个是非常有用的。假如deployA删除了,rsA通过absentOwnerCache能判断,deployA确实存在,并且被删除了。
(2)将所有的依赖加入attemptToDelete队列
(3)如果这个节点有owners,并且处于删除Dependents中,那么很有可能它的owners正在等自己。现在自己删除了,所以将owners再加入删除队列
case event.eventType == deleteEvent:
if !found {
klog.V(5).Infof("%v doesn't exist in the graph, this shouldn't happen", accessor.GetUID())
return true
}
// removeNode updates the graph
gb.removeNode(existingNode)
existingNode.dependentsLock.RLock()
defer existingNode.dependentsLock.RUnlock()
if len(existingNode.dependents) > 0 {
gb.absentOwnerCache.Add(accessor.GetUID())
}
for dep := range existingNode.dependents {
gb.attemptToDelete.Add(dep)
}
for _, owner := range existingNode.owners {
ownerNode, found := gb.uidToNode.Read(owner.UID)
if !found || !ownerNode.isDeletingDependents() {
continue
}
// this is to let attempToDeleteItem check if all the owner's
// dependents are deleted, if so, the owner will be deleted.
gb.attemptToDelete.Add(ownerNode)
}
}
2.4 processTransitions函数的处理逻辑
从上面的分析,可以看出来,runProcessGraphChanges就做了两件事情:
(1)时刻维护图的正确和完整
(2)将可能需要删除的对象扔进AttemptToOrphan,AttemptToDelete队列
processTransitions就是做第二件事情,将可能需要删除的对象扔进AttemptToOrphan,AttemptToDelete队列。
判断的逻辑很简单:
(1)如果这个对象正在删除,并且有orphan这个Finalizer,就将它扔进attemptToOrphan队列
(1)如果这个对象正在删除,并且有foregroundDeletion这个Finalizer,就将它和它的dependents扔进attemptToDelete
func (gb *GraphBuilder) processTransitions(oldObj interface{}, newAccessor metav1.Object, n *node) {
if startsWaitingForDependentsOrphaned(oldObj, newAccessor) {
klog.V(5).Infof("add %s to the attemptToOrphan", n.identity)
gb.attemptToOrphan.Add(n)
return
}
if startsWaitingForDependentsDeleted(oldObj, newAccessor) {
klog.V(2).Infof("add %s to the attemptToDelete, because it's waiting for its dependents to be deleted", n.identity)
// if the n is added as a "virtual" node, its deletingDependents field is not properly set, so always set it here.
n.markDeletingDependents()
for dep := range n.dependents {
gb.attemptToDelete.Add(dep)
}
gb.attemptToDelete.Add(n)
}
}
2.5 runAttemptToOrphanWorker
runAttemptToOrphanWorker逻辑如下:
(1)获得这个节点的所有orphanDependents
(2)调用orphanDependents,删除它的orphanDependents的OwnerReferences。
(3)删除orphan这个Finalizer,让该对象可以被删除
func (gc *GarbageCollector) runAttemptToOrphanWorker() {
for gc.attemptToOrphanWorker() {
}
}
// attemptToOrphanWorker dequeues a node from the attemptToOrphan, then finds its
// dependents based on the graph maintained by the GC, then removes it from the
// OwnerReferences of its dependents, and finally updates the owner to remove
// the "Orphan" finalizer. The node is added back into the attemptToOrphan if any of
// these steps fail.
func (gc *GarbageCollector) attemptToOrphanWorker() bool {
item, quit := gc.attemptToOrphan.Get()
gc.workerLock.RLock()
defer gc.workerLock.RUnlock()
if quit {
return false
}
defer gc.attemptToOrphan.Done(item)
owner, ok := item.(*node)
if !ok {
utilruntime.HandleError(fmt.Errorf("expect *node, got %#v", item))
return true
}
// we don't need to lock each element, because they never get updated
owner.dependentsLock.RLock()
dependents := make([]*node, 0, len(owner.dependents))
// 1.获得这个节点的所有orphanDependents
for dependent := range owner.dependents {
dependents = append(dependents, dependent)
}
owner.dependentsLock.RUnlock()
// 2.调用orphanDependents,删除它的orphanDependents的OwnerReferences。
// 举例来说,删除deployA时,删除rsA的OwnerReference,这样rsA就不受deployA控制了。
err := gc.orphanDependents(owner.identity, dependents)
if err != nil {
utilruntime.HandleError(fmt.Errorf("orphanDependents for %s failed with %v", owner.identity, err))
gc.attemptToOrphan.AddRateLimited(item)
return true
}
// update the owner, remove "orphaningFinalizer" from its finalizers list
// 3. 删除orphan这个Finalizer,让deployA可以被删除
err = gc.removeFinalizer(owner, metav1.FinalizerOrphanDependents)
if err != nil {
utilruntime.HandleError(fmt.Errorf("removeOrphanFinalizer for %s failed with %v", owner.identity, err))
gc.attemptToOrphan.AddRateLimited(item)
}
return true
}
2.6 attemptToDeleteWorker
主要调用attemptToDeleteItem函数。attemptToDeleteItem的逻辑如下:
(1)如果该对象isBeingDeleted,并且没有在删除Dependents,直接返回
(2)如果该对象正在删除dependents, 将dependents加入attemptToDelete队列
(3)调用classifyReferences,计算solid,dangling,waitingForDependentsDeletion的情况,solid,dangling,waitingForDependentsDeletion是OwnerReferences数组
solid:当前节点的owner存在,并且owner的状态不是删除Dependents中
dangling:owner不存在
waitingForDependentsDeletion:owner存在,并且owner的状态是删除Dependents中
(4)根据solid,dangling,waitingForDependentsDeletion的情况进行不同的处理,具体如下:
- 情况1: 如果有至少有一个owner存在,并且不处于删除依赖中。这个时候判断dangling,waitingForDependentsDeletion的数量是否为0。如果为0,说明当前不需要处理;否则,将该节点对应dangling,waitingForDependentsDeletion的节点删除dependents。
- 情况2: 到这里说明 len(solid)=0,这个时候如果有节点在等待这个节点删除,并且这个节点还有依赖,那么将这个节点的blockOwnerDeletion设置为true。然后后台删除这个节点。 这里举一个例子说明:当前台模式删除deployA时,rsA是当前要处理的节点。这个时候rsA发现deployA再等自己删除,但是自己又有依赖podA,所以这里马上将自己设置为前台删除。这样在deployA看来就实现了先删除podA, 再删除rsA,再删除deployA。
- 情况3: 除了上面的两种情况,根据设置的删除策略删除这个节点。
这里举一个例子说明:当后台模式删除deployA时,rsA是当前要处理的节点。这个时候deployA已经删除了,同时没有finalizer,因为只有Orphan, foreGround有finalizer,所以这个时候直接默认以background删除这个节点。
func (gc *GarbageCollector) attemptToDeleteWorker() bool {
item, quit := gc.attemptToDelete.Get()
err := gc.attemptToDeleteItem(n)
return true
}
func (gc *GarbageCollector) attemptToDeleteItem(item *node) error {
klog.V(2).Infof("processing item %s", item.identity)
// "being deleted" is an one-way trip to the final deletion. We'll just wait for the final deletion, and then process the object's dependents.
// 1.如果该对象isBeingDeleted,并且没有在删除Dependents,直接返回
if item.isBeingDeleted() && !item.isDeletingDependents() {
klog.V(5).Infof("processing item %s returned at once, because its DeletionTimestamp is non-nil", item.identity)
return nil
}
// TODO: It's only necessary to talk to the API server if this is a
// "virtual" node. The local graph could lag behind the real status, but in
// practice, the difference is small.
latest, err := gc.getObject(item.identity)
switch {
case errors.IsNotFound(err):
// the GraphBuilder can add "virtual" node for an owner that doesn't
// exist yet, so we need to enqueue a virtual Delete event to remove
// the virtual node from GraphBuilder.uidToNode.
klog.V(5).Infof("item %v not found, generating a virtual delete event", item.identity)
gc.dependencyGraphBuilder.enqueueVirtualDeleteEvent(item.identity)
// since we're manually inserting a delete event to remove this node,
// we don't need to keep tracking it as a virtual node and requeueing in attemptToDelete
item.markObserved()
return nil
case err != nil:
return err
}
if latest.GetUID() != item.identity.UID {
klog.V(5).Infof("UID doesn't match, item %v not found, generating a virtual delete event", item.identity)
gc.dependencyGraphBuilder.enqueueVirtualDeleteEvent(item.identity)
// since we're manually inserting a delete event to remove this node,
// we don't need to keep tracking it as a virtual node and requeueing in attemptToDelete
item.markObserved()
return nil
}
// TODO: attemptToOrphanWorker() routine is similar. Consider merging
// attemptToOrphanWorker() into attemptToDeleteItem() as well.
// 2. 如果该对象正在删除dependents, 将dependents加入attemptToDelete队列
if item.isDeletingDependents() {
return gc.processDeletingDependentsItem(item)
}
// compute if we should delete the item
ownerReferences := latest.GetOwnerReferences()
if len(ownerReferences) == 0 {
klog.V(2).Infof("object %s's doesn't have an owner, continue on next item", item.identity)
return nil
}
// 3.计算solid,dangling,waitingForDependentsDeletion的情况。
solid, dangling, waitingForDependentsDeletion, err := gc.classifyReferences(item, ownerReferences)
if err != nil {
return err
}
klog.V(5).Infof("classify references of %s.\nsolid: %#v\ndangling: %#v\nwaitingForDependentsDeletion: %#v\n", item.identity, solid, dangling, waitingForDependentsDeletion)
// 4.根据solid,dangling,waitingForDependentsDeletion的情况进行不同的处理
switch {
// 情况1: 如果有至少有一个owner存在,并且不处于删除依赖中。这个时候判断dangling,waitingForDependentsDeletion的数量是否为0。如果为0,说明当前不需要处理;否则,将该节点对应dangling,waitingForDependentsDeletion的节点删除dependents。
case len(solid) != 0:
klog.V(2).Infof("object %#v has at least one existing owner: %#v, will not garbage collect", item.identity, solid)
if len(dangling) == 0 && len(waitingForDependentsDeletion) == 0 {
return nil
}
klog.V(2).Infof("remove dangling references %#v and waiting references %#v for object %s", dangling, waitingForDependentsDeletion, item.identity)
// waitingForDependentsDeletion needs to be deleted from the
// ownerReferences, otherwise the referenced objects will be stuck with
// the FinalizerDeletingDependents and never get deleted.
ownerUIDs := append(ownerRefsToUIDs(dangling), ownerRefsToUIDs(waitingForDependentsDeletion)...)
patch := deleteOwnerRefStrategicMergePatch(item.identity.UID, ownerUIDs...)
_, err = gc.patch(item, patch, func(n *node) ([]byte, error) {
return gc.deleteOwnerRefJSONMergePatch(n, ownerUIDs...)
})
return err
// 情况2: 到这里说明 len(solid)=0,这个时候如果有节点在等待这个节点删除,并且这个节点还有依赖,那么将这个节点的blockOwnerDeletion设置为true。然后后台删除这个节点。
case len(waitingForDependentsDeletion) != 0 && item.dependentsLength() != 0:
deps := item.getDependents()
for _, dep := range deps {
if dep.isDeletingDependents() {
// this circle detection has false positives, we need to
// apply a more rigorous detection if this turns out to be a
// problem.
// there are multiple workers run attemptToDeleteItem in
// parallel, the circle detection can fail in a race condition.
klog.V(2).Infof("processing object %s, some of its owners and its dependent [%s] have FinalizerDeletingDependents, to prevent potential cycle, its ownerReferences are going to be modified to be non-blocking, then the object is going to be deleted with Foreground", item.identity, dep.identity)
patch, err := item.unblockOwnerReferencesStrategicMergePatch()
if err != nil {
return err
}
if _, err := gc.patch(item, patch, gc.unblockOwnerReferencesJSONMergePatch); err != nil {
return err
}
break
}
}
klog.V(2).Infof("at least one owner of object %s has FinalizerDeletingDependents, and the object itself has dependents, so it is going to be deleted in Foreground", item.identity)
// the deletion event will be observed by the graphBuilder, so the item
// will be processed again in processDeletingDependentsItem. If it
// doesn't have dependents, the function will remove the
// FinalizerDeletingDependents from the item, resulting in the final
// deletion of the item.
policy := metav1.DeletePropagationForeground
return gc.deleteObject(item.identity, &policy)
// 情况3: 除了上面的两种情况,根据设置的删除策略删除这个节点
default:
// item doesn't have any solid owner, so it needs to be garbage
// collected. Also, none of item's owners is waiting for the deletion of
// the dependents, so set propagationPolicy based on existing finalizers.
var policy metav1.DeletionPropagation
switch {
case hasOrphanFinalizer(latest):
// if an existing orphan finalizer is already on the object, honor it.
policy = metav1.DeletePropagationOrphan
case hasDeleteDependentsFinalizer(latest):
// if an existing foreground finalizer is already on the object, honor it.
policy = metav1.DeletePropagationForeground
default:
// otherwise, default to background.
policy = metav1.DeletePropagationBackground
}
klog.V(2).Infof("delete object %s with propagation policy %s", item.identity, policy)
return gc.deleteObject(item.identity, &policy)
}
}
2.7 uidToNode到底是什么
在startGarbageCollectorController的时候 开启debug模式
return garbagecollector.NewDebugHandler(garbageCollector), true, nil
利用这个,我们可以看到uidToNode里的数据。数据太多,我这里就看 kube-system命名空间,kube-hpa这个deploy 在uidToNode的数据。
kcm对应的10252端口
。看这个
// 639d5269-d73d-4964-a7de-d6f386c9c7e4是kube-hpa这个deploy的uid。
# curl http://127.0.0.1:10252/debug/controllers/garbagecollector/graph?uid=639d5269-d73d-4964-a7de-d6f386c9c7e4
strict digraph full {
// Node definitions.
0 [
label="\"uid=e66e45c0-5695-4c93-82f1-067b20aa035f\nnamespace=kube-system\nReplicaSet.v1.apps/kube-hpa-84c884f994\n\""
group="apps"
version="v1"
kind="ReplicaSet"
namespace="kube-system"
name="kube-hpa-84c884f994"
uid="e66e45c0-5695-4c93-82f1-067b20aa035f"
missing="false"
beingDeleted="false"
deletingDependents="false"
virtual="false"
];
1 [
label="\"uid=9833c399-b139-4432-98f7-cec13158f804\nnamespace=kube-system\nPod.v1/kube-hpa-84c884f994-7gwpz\n\""
group=""
version="v1"
kind="Pod"
namespace="kube-system"
name="kube-hpa-84c884f994-7gwpz"
uid="9833c399-b139-4432-98f7-cec13158f804"
missing="false"
beingDeleted="false"
deletingDependents="false"
virtual="false"
];
2 [
label="\"uid=639d5269-d73d-4964-a7de-d6f386c9c7e4\nnamespace=kube-system\nDeployment.v1.apps/kube-hpa\n\""
group="apps"
version="v1"
kind="Deployment"
namespace="kube-system"
name="kube-hpa"
uid="639d5269-d73d-4964-a7de-d6f386c9c7e4"
missing="false"
beingDeleted="false"
deletingDependents="false"
virtual="false"
];
// Edge definitions.
0 -> 2;
1 -> 0;
}
可以看出来,这个图就是表示了节点的依赖,同时beingDeleted, deletingDependents表示了当前节点的状态。
这个还可以将图画出来。
curl http://127.0.0.1:10252/debug/controllers/garbagecollector/graph?uid=639d5269-d73d-4964-a7de-d6f386c9c7e4 > tmp.dot
dot -Tsvg -o graph.svg tmp.dot
graph.svg如下:
3.总结
gc这块的逻辑非常绕,也非常难懂。但是多看几遍就会发现这个其他的妙处。这里再次总结一下整个流程。
(1) kcm启动时,gc controller随之启动。gc 启动时,做了以下的初始化工作见下图:
- 定期获取所有能删除的资源,保存到RestMapper。然后启动这些资源的监听事件
- 对这些些资源设置add, update, delete事件的处理逻辑:只要有变化就将其封装成一个event,然后扔进graphChanges队列
(2)runProcessGraphChanges负责处理graphChanges队列中的对象。主要做了俩件事情:
- 第一,根据不同的变化,维护uidToNode这个图。一个对象对应了uidToNode中的一个节点,同时该节点有o wner, depends字段。
- 第二,根据节点的beingDeleted, deletingDependents等字段,判断该节点是否可能要删除。如果要删除,将其扔进attemtToDelete, attemtToOrghan队列
(3)attemtToDeleteWorker, attemtToOrghanWorker负责出来attemtToDelete, attemtToOrghan队列,根据不同的情况进行删除